VA.SAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) IV-Semester Advanced Suppl. Examinations, Aug./Sept.-2023 **Electromagnetic Field Theory**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No.	Stem of the question	M	L	CO	DO/DOC
1.	State Coulomb's law in vector form			СО	PO/PSC
2.	Convert a point P(1,3,5) from Cartesian coordinates to Cylindrical coordinates	2 2	2	1	1
3.	What is the continuity equation for electrostatic fields	2	2	1	1
4.	Determine the volume charge density due to the electric flux density $D=9xy \widehat{a_x} + 5x^2 \widehat{a_y}$	2	3	1	2
5.	Give the magnetic boundary conditions between two mecia	2	1	3	1
6.	Find the magnetic field Intensity H at (0,0,0), if Plane y=1 carries a current sheet density of K=50a _z mA/m.	2	3	3	2
7.	What is the Faraday's law of electromagnetic induction	2	1	4	1/2
8.	Write the wave equations for free space	2	1	5	1/2
9.	Define Skin depth	2	1	5	1/2
10.	Draw the equivalent circuit of a transmission line and define the primary constants.	2	1	5	1/2
11. a)	Find the electric field intensity on a point charge Q located at a distance 'r' units from the origin due to N no of point charges located at different distances 'r ₁ ', 'r ₂ ' 'r _n ' units respectively as shown in figure. Q ₂ Q ₃ Q ₄ \overline{L}_{3} \overline{L}_{4} \overline{L}_{1} \overline{L}_{1}	5	2	= 1	1
b) 2. a)	Find the total charge (a) on line $0 < x < 5m$ if $\rho_l = 12x^2$ mC/m (b) On Cylinder $\rho = 3$, $0 < z < 4$, if $\rho_s = \rho z^2$ nC/m ² and (c) with in sphere given $r = 4m$, $\rho_v = \frac{10}{r \sin \theta}$ Explain the Gauss's law along with its applications and under what	3	3	1	2
b)	conditions the law can be applied. Find the electric field of a potential function $V(x,y)$ given by $\log(x+y)$ at the point $(1,1,0)$		2		

3. a)	Obtain an expression for differential magnetic field strength $d\vec{H}$ due differential current element Idl at the origin in the positive Z- direction		2	2	3	3
	using Biot-Savart's Law					
b)	An infinitely long conducting filament is placed along the X-axis a carries current 6mA in the i_x direction. Find the magnetic field Intens			3	3	2
	H at $(-1,3,4)$.					
4. a)	Derive the Maxwell's equations in differential form for time vary fields and also give them in word statements	ing 5		2	4	3/2
b)	What is the inconsistency of Amperes law? How it is rectified and der the modified expression for Ampere's law?	rive 3		4	4	3/2
5. a)	Define the Brewster's angle and obtain the Brewster angle for a paralle polarized wave with oblique incidence in a perfect dielectric medium.	elly 5	7-	4	5	3/2
b)	In a medium E=16e-x/20 sin (2X108t-2x)a _z V/m. Find the direction propagation, the propagation constant and velocity of propagation	of 3	1	3	5	2/2
6. a)	Find the electric field Intensity at a point P due to an infinite straight with constant line charge density ρ_L C/m.	line 4	1	1	1	1
b)	Determine the capacitance of the capacitor shown. Take $\epsilon_{r1} = 4$, $\epsilon_{r2} = d = 5$ mm and $s = 30$ cm ² .	= 6,	1	3	1	2
	er_1 $\frac{1}{2}$					
	ϵr_2 $\frac{1}{2}$					
7	A many two of the following:					
7.	Answer any two of the following:	n ho	1	2	3	1
а	used to find magnetic field intensity		4	4	3	1
b	250 sin 10 ¹⁰ t V/m. Calculate the displacement current density		4	3	4	2/2
	Derive the expressions for attenuation constant (α) and phase con (β), intrinsic impedance (η), velocity of propagation (ν_p), if a uniplane wave is propagating through a loss less dielectric medium.	stant form	4	2	5	3/2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
